Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(11)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37298367

RESUMO

Complex diseases are associated with the effects of multiple genes, proteins, and biological pathways. In this context, the tools of Network Medicine are compatible as a platform to systematically explore not only the molecular complexity of a specific disease but may also lead to the identification of disease modules and pathways. Such an approach enables us to gain a better understanding of how environmental chemical exposures affect the function of human cells, providing better perceptions about the mechanisms involved and helping to monitor/prevent exposure and disease to chemicals such as benzene and malathion. We selected differentially expressed genes for exposure to benzene and malathion. The construction of interaction networks was carried out using GeneMANIA and STRING. Topological properties were calculated using MCODE, BiNGO, and CentiScaPe, and a Benzene network composed of 114 genes and 2415 interactions was obtained. After topological analysis, five networks were identified. In these subnets, the most interconnected nodes were identified as: IL-8, KLF6, KLF4, JUN, SERTAD1, and MT1H. In the Malathion network, composed of 67 proteins and 134 interactions, HRAS and STAT3 were the most interconnected nodes. Path analysis, combined with various types of high-throughput data, reflects biological processes more clearly and comprehensively than analyses involving the evaluation of individual genes. We emphasize the central roles played by several important hub genes obtained by exposure to benzene and malathion.


Assuntos
Benzeno , Exposição Ocupacional , Humanos , Benzeno/toxicidade , Malation/toxicidade , Biomarcadores/metabolismo , Exposição Ocupacional/efeitos adversos , Exposição Ambiental , Redes Reguladoras de Genes , Perfilação da Expressão Gênica
2.
Nat Neurosci ; 25(11): 1559-1568, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36319771

RESUMO

Most studies of gene expression in the brains of individuals with schizophrenia have focused on cortical regions, but subcortical nuclei such as the striatum are prominently implicated in the disease, and current antipsychotic drugs target the striatum's dense dopaminergic innervation. Here, we performed a comprehensive analysis of the genetic and transcriptional landscape of schizophrenia in the postmortem caudate nucleus of the striatum of 443 individuals (245 neurotypical individuals, 154 individuals with schizophrenia and 44 individuals with bipolar disorder), 210 from African and 233 from European ancestries. Integrating expression quantitative trait loci analysis, Mendelian randomization with the latest schizophrenia genome-wide association study, transcriptome-wide association study and differential expression analysis, we identified many genes associated with schizophrenia risk, including potentially the dopamine D2 receptor short isoform. We found that antipsychotic medication has an extensive influence on caudate gene expression. We constructed caudate nucleus gene expression networks that highlight interactions involving schizophrenia risk. These analyses provide a resource for the study of schizophrenia and insights into risk mechanisms and potential therapeutic targets.


Assuntos
Antipsicóticos , Esquizofrenia , Humanos , Antipsicóticos/farmacologia , Antipsicóticos/uso terapêutico , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética , Esquizofrenia/metabolismo , Núcleo Caudado , Estudo de Associação Genômica Ampla , Transcriptoma
3.
J Dev Orig Health Dis ; 13(5): 556-565, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35256034

RESUMO

The crosstalk between maternal stress exposure and fetal development may be mediated by epigenetic mechanisms, including DNA methylation (DNAm). To address this matter, we collect 32 cord blood samples from low-income Brazilian pregnant adolescents participants of a pilot randomized clinical intervention study (ClinicalTrials.gov, Identifier: NCT02807818). We hypothesized that the association between the intervention and infant neurodevelopmental outcomes at 12 months of age would be mediated by DNAm. First, we searched genome methylation differences between cases and controls using different approaches, as well as differences in age acceleration (AA), represented by the difference of methylation age and birth age. According to an adjusted p-value ≤ 0.05 we identified 3090 differentially methylated positions- CpG sites (DMPs), 21 differentially methylated regions (DMRs) and one comethylated module weakly preserved between groups. The intervention group presented a smaller AA compared to the control group (p = 0.025). A logistic regression controlled by sex and with gestational age indicated a coefficient of -0.35 towards intervention group (p = 0.016) considering AA. A higher cognitive domain score from Bayley III scale was observed in the intervention group at 12 months of age. Then, we performed a potential causal mediation analysis selecting only DMPs highly associated with the cognitive domain (adj. R2 > 0.4), DMRs and CpGs of hub genes from the weakly preserved comethylated module and epigenetic clock as raw values. DMPs in STXBP6, and PF4 DMR, mediated the association between the maternal intervention and the cognitive domain at 12 months of age. In conclusion, DNAm in different sites and regions mediated the association between intervention and cognitive outcome.


Assuntos
Metilação de DNA , Epigênese Genética , Adolescente , Cognição , Epigenômica , Feminino , Sangue Fetal/metabolismo , Humanos , Exposição Materna , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...